Diffusive feed of reactants and Hopf bifurcations in an oscillatory reaction-diffusion model
نویسندگان
چکیده
منابع مشابه
Hopf Bifurcation in an Oscillatory-Excitable Reaction-Diffusion Model with Spatial Heterogeneity
We focus on the qualitative analysis of a reaction-diffusion with spatial heterogeneity near a bifurcation. The system is a generalization of the well known FitzHugh-Nagumo system in which the excitability parameter is space dependent. This heterogeneity allows to exhibit concomitant stationary and oscillatory phenomena. We prove the existence of an Hopf bifurcation and determine an equation of...
متن کاملAmplified Hopf Bifurcations in Feed-Forward Networks
In [18] the authors developed a method for computing normal forms of dynamical systems with a coupled cell network structure. We now apply this theory to one-parameter families of homogeneous feed-forward chains with 2-dimensional cells. Our main result is that Hopf bifurcations in such families generically generate branches of periodic solutions with amplitudes growing like ∼ |λ| 1 2 ,∼ |λ| 1 ...
متن کاملHopf bifurcations in a reaction–diffusion population model with delay effect
A reaction-diffusion population model with a general time-delayed growth rate per capita is considered. From a careful analysis of the characteristic equation, the stability of the positive steady state solution and the existence of supercritical Hopf bifurcation from the positive steady state solution are obtained via the implicit function theorem, where the time delay is used as the bifurcati...
متن کاملComputing Hopf Bifurcations in Chemical Reaction Networks Using Reaction Coordinates
The analysis of dynamic of chemical reaction networks by computing Hopf bifurcation is a method to understand the qualitative behavior of the network due to its relation to the existence of oscillations. For low dimensional reaction systems without additional constraints Hopf bifurcation can be computed by reducing the question of its occurrence to quantifier elimination problems on real closed...
متن کاملTime Delay-Induced Instabilities and Hopf Bifurcations in General Reaction-Diffusion Systems
The distribution of the roots of a second order transcendental polynomial is analyzed, and it is used for solving the purely imaginary eigenvalue of a transcendental characteristic equation with two transcendental terms. The results are applied to the stability and associated Hopf bifurcation of a constant equilibrium of a general reaction–diffusion system or a system of ordinary differential e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 1999
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.478129